TSRF Blog

 

Secrets of Nutrition
& Sports Supplements
Revealed

 

 

 

 

 

Research Articles

 

Alpha-Lipoic Acid

 

Toxicol Appl Pharmacol 2002 Jul 1;182(1):84-90

 

 
Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid.

Moini H, Packer L, Saris NE.

Department of Applied Chemistry and Microbiology, PB 56 Viikki Biocenter, FIN-00014, University of Helsinki, Helsinki, Finland. hmoini@usc.edu

Reactive oxygen (ROS) and nitrogen oxide (RNOS) species are produced as by-products of oxidative metabolism. A major function for ROS and RNOS is immunological host defense. Recent evidence indicate that ROS and RNOS may also function as signaling molecules. However, high levels of ROS and RNOS have been considered to potentially damage cellular macromolecules and have been implicated in the pathogenesis and progression of various chronic diseases. alpha-Lipoic acid and dihydrolipoic acid exhibit direct free radical scavenging properties and as a redox couple, with a low redox potential of -0.32 V, is a strong reductant. Several studies provided evidence that alpha-lipoic acid supplementation decreases oxidative stress and restores reduced levels of other antioxidants in vivo. However, there is also evidence indicating that alpha-lipoic acid and dihydrolipoic acid may exert prooxidant properties in vitro. alpha-Lipoic acid and dihydrolipoic acid were shown to promote the mitochondrial permeability transition in permeabilized hepatocytes and isolated rat liver mitochondria. Dihydrolipoic acid also stimulated superoxide anion production in rat liver mitochondria and submitochondrial particles. alpha-Lipoic acid was recently shown to stimulate glucose uptake into 3T3-L1 adipocytes by increasing intracellular oxidant levels and/or facilitating insulin receptor autophosphorylation presumably by oxidation of critical thiol groups present in the insulin receptor beta-subunit. Whether alpha-lipoic acid and/or dihydrolipoic acid-induced oxidative protein modifications contribute to their versatile effects observed in vivo warrants further investigation.

 

Free Radic Biol Med 1999 Nov;27(9-10):1114-21

 


Comparison of the effect of alpha-lipoic acid and alpha-tocopherol supplementation on measures of oxidative stress.

Marangon K, Devaraj S, Tirosh O, Packer L, Jialal I.

Department of Pathology, University of Texas Southwestern Medical Center at Dallas, 75235-9073, USA.

In vitro studies have shown that alpha-lipoic acid (LA) is an antioxidant. There is a paucity of studies on LA supplementation in humans. Therefore, the aim of this study was to assess the effect of oral supplementation with LA alone and in combination with alpha-tocopherol (AT) on measures of oxidative stress. A total of 31 healthy adults were supplemented for 2 months either with LA (600 mg/d, n = 16), or with AT (400 IU/d, n = 15) alone, and then with the combination of both for 2 additional months. At baseline, after 2 and 4 months of supplementation, urine for F2-isoprostanes, plasma for protein carbonyl measurement and low-density lipoprotein (LDL) oxidative susceptibility was collected. Plasma oxidizability was assessed after incubation with 100 mM 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) for 4 h at 37 degrees C. LDL was subjected to copper- and AAPH-catalyzed oxidation at 37 degrees C over 5 h and the lag time was computed. LA significantly increased the lag time of LDL lipid peroxide formation for both copper-catalyzed and AAPH-induced LDL oxidalion (p < .05), decreased urinary F2-isoprostanes levels (p < .05), and plasma carbonyl levels after AAPH oxidation (p < .001). AT prolonged LDL lag time of lipid peroxide formation (p < .01 ) and conjugated dienes (p < .01) after copper-catalyzed LDL oxidation, decreased urinary F2-isoprostanes (p < .001), but had no effect on plasma carbonyls. The addition of LA to AT did not produce an additional significant improvement in the measures of oxidative stress. In conclusion, LA supplementation functions as an antioxidant, because it decreases plasma- and LDL-oxidation and urinary isoprostanes.

Free Radic Biol Med 1998 Apr;24(6):1023-39

 

 
Alpha-lipoic acid in liver metabolism and disease.

Bustamante J, Lodge JK, Marcocci L, Tritschler HJ, Packer L, Rihn BH.

Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA.

R-alpha-Lipoic acid is found naturally occurring as a prosthetic group in alpha-keto acid dehydrogenase complexes of the mitochondria, and as such plays a fundamental role in metabolism. Although this has been known for decades, only recently has free supplemented alpha-lipoic acid been found to affect cellular metabolic processes in vitro, as it has the ability to alter the redox status of cells and interact with thiols and other antioxidants. Therefore, it appears that this compound has important therapeutic potential in conditions where oxidative stress is involved. Early case studies with alpha-lipoic acid were performed with little knowledge of the action of alpha-lipoic acid at a cellular level, but with the rationale that because the naturally occurring protein bound form of alpha-lipoic acid has a pivotal role in metabolism, that supplementation may have some beneficial effect. Such studies sought to evaluate the effect of supplemented alpha-lipoic acid, using low doses, on lipid or carbohydrate metabolism, but little or no effect was observed. A common response in these trials was an increase in glucose uptake, but increased plasma levels of pyruvate and lactate were also observed, suggesting that an inhibitory effect on the pyruvate dehydrogenase complex was occurring. During the same period, alpha-lipoic acid was also used as a therapeutic agent in a number of conditions relating to liver disease, including alcohol-induced damage, mushroom poisoning, metal intoxification, and CCl4 poisoning. Alpha-Lipoic acid supplementation was successful in the treatment for these conditions in many cases. Experimental studies and clinical trials in the last 5 years using high doses of alpha-lipoic acid (600 mg in humans) have provided new and consistent evidence for the therapeutic role of antioxidant alpha-lipoic acid in the treatment of insulin resistance and diabetic polyneuropathy. This new insight should encourage clinicians to use alpha-lipoic acid in diseases affecting liver in which oxidative stress is involved.

Diabetes Care 1995 Aug;18(8):1160-7

 


Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy.

Nagamatsu M, Nickander KK, Schmelzer JD, Raya A, Wittrock DA, Tritschler H, Low PA.

Department of Neurology, Mayo Foundation, Rochester, Minnesota 55905, USA.

OBJECTIVE--To determine whether lipoic acid (LA) will reduce oxidative stress in diabetic peripheral nerves and improve neuropathy. RESEARCH DESIGN AND METHODS--We used the model of streptozotocin-induced diabetic neuropathy (SDN) and evaluated the efficacy of LA supplementation in improving nerve blood flow (NBF), electrophysiology, and indexes of oxidative stress in peripheral nerves affected by SDN, at 1 month after onset of diabetes and in age-matched control rats. LA, in doses of 20, 50, and 100 mg/kg, was administered intraperitoneally five times per week after onset of diabetes. RESULTS--NBF in SDN was reduced by 50%; LA did not affect the NBF of normal nerves but improved that of SDN in a dose-dependent manner. After 1 month of treatment, LA-supplemented rats (100 mg/kg) exhibited normal NBF. The most sensitive and reliable indicator of oxidative stress was reduction in reduced glutathione, which was significantly reduced in streptozotocin-induced diabetic and alpha-tocopherol-deficient nerves; it was improved in a dose-dependent manner in LA-supplemented rats. The conduction velocity of the digital nerve was reduced in SDN and was significantly improved by LA. CONCLUSIONS--These studies suggest that LA improves SDN, in significant part by reducing the effects of oxidative stress. The drug may have potential in the treatment of human diabetic neuropathy.

 

Can J Appl Physiol 2001;26 Suppl:S4-12

 


Update on thiol status and supplements in physical exercise.

Sen CK.

Laboratory of Molecular Medicine, Department of Surgery, 512 Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA.

Strenuous physical exercise represents a condition that is often associated with increased production of reactive oxygen species in various tissues. One of the most reliable indices of exercise-induced oxidant production is tissue glutathione oxidation. In humans, exercise-induced blood glutathione oxidation is rapid and subject to control by antioxidant supplementation. The objective of this brief review is to provide an update of our current understanding of cellular thiols and thiol antioxidants. Cellular thiols are critically important in maintaining the cellular antioxidant defense network. In addition, thiols play a key role in regulating redox-sensitive signal transduction process. Lipoic acid is a highly promising thiol antioxidant supplement. Recent studies have clarified that while higher levels of oxidants may indeed inflict oxidative damage, oxidants are not necessarily deleterious. Under certain conditions oxidants may function as cellular messengers that regulate a multitude of signal transduction pathways. In light of this, the significance of oxidants in various aspects of biology needs to be revisited.

 

Back to Research Page

 

 

 

© 2002-2005 Supplement Research Foundation, Inc. All rights reserved.

The content on this site is for informational purposes only and does not replace the advice of a qualified physician.

Please consult a doctor before starting any nutrition, training, and supplementation program.